Structure Identification of Fuzzy Classifiers

نویسندگان

  • Janos Abonyi
  • Hans Roubos
چکیده

Data-based identification of fuzzy rule-based classifiers for high-dimensional problems is addressed. A crisp binary decision tree approach is proposed for the selection of the relevant features and effective initial partitioning of the input domain. The decision tree is then transformed into a fuzzy rule-based classifier. Fuzzy classifiers have more flexible decision boundaries than decision trees and can therefore be more parsimonious. Therefore, the DT initialized fuzzy classifier is reduced in an iterative scheme by means of similarity-based rulereduction. A genetic algorithm with a multi-objective criterion searching for both redundancy and accuracy is applied. The proposed approach is studied on an artificial problem and the Wisconsin Breast Cancer classification problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Identification of Fuzzy Classifers

For complex and high-dimensional problems, data-driven identification of classifiers has to deal with structural issues like the selection of the relevant features and effective initial partition of the input domain. Therefore, the identification of fuzzy classifiers is a challenging topic. Decision-tree (DT) generation algorithms are effective in feature selection and extraction of crisp class...

متن کامل

A Self-Organizing Interval Type-2 Fuzzy Neural Network for Radar Emitter Identification

Several classifiers are available for the identification of radar emitter types from their waveform parameters. In particular, these classifiers can be applied to data that is affected by some types of noise. This paper proposes a more efficient classifier, which uses on-line learning and is attractive for real time applications, such as electronic support measures. A self-organizing interval t...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

A Combination-of-Tools Method for Learning Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines

A new approach is proposed for the data-based identification of transparent fuzzy rule-based classifiers. It is observed that fuzzy rule-based classifiers work in a similar manner as kernel function-based support vector machines (SVMs) since both model the input space by nonlinearly maps into a feature space where the decision can be easily made. Accordingly, trained SVM can be used for the con...

متن کامل

Supervised Clustering and Fuzzy Decision Tree Induction for the Identification of Compact Classifiers

Fuzzy decision tree induction algorithms require the fuzzy quantization of the input variables. This paper demonstrates that supervised fuzzy clustering combined with similarity-based rule-simplification algorithms is an effective tool to obtain the fuzzy quantization of the input variables, so the synergistic combination of supervised fuzzy clustering and fuzzy decision tree induction can be e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000